Improved Blind Automatic Malicious Activity Detection in Honeypot Data

Department of Electrical Engineering
University of Brasilia (UnB)
jpdacosta@unb.br, edisonpignaton@unb.br, bernardo.david@redes.unb.br, dinoamaral@redes.unb.br, desousa@unb.br
URL: www.ppgee.unb.br

Abstract—This paper presents the modified exponential fitting test for automatically identifying malicious activities in honeypot data based on state of the art model order selection schemes. Model order selection (MOS) schemes are frequently applied in several signal processing applications, such as RADAR, SONAR, communications, channel modeling, medical imaging, and parameters estimation of dominant multipath components from MIMO channel measurements. "In this paper, we apply MOS schemes for the identification of malicious activity in honeypots." The proposed blind automatic techniques are efficient and need neither previous training nor knowledge of attack signatures for detecting malicious activities. In order to achieve such results an innovative approach is considered which models network traffic data as signals and noise allowing the application of signal processing methods. The model order selection schemes are adapted to process network data, showing that the Modified Exponential Fitting Test achieves the best performance and reliability in detecting attacks. The efficiency and accuracy of the theoretical results are tested on real data collected at a honeypot system located at the network border of a large banking institution in Latin America.

I. INTRODUCTION

A honeypot system collects malicious traffic and general information on malicious activities directed towards the network where it is located [2]. It is an important part of the network security solution serving both as data source for intrusion detection systems [3] as well as a decoy for slowing down automated attacks [4]. Network administration benefits of efficient algorithms for identifying malicious activities in honeypot data. These algorithms are particularly useful to generate statistics, as well as to support intelligent intrusion prevention systems and to provide important information to network administrators, so that they can take actions to protect the network based on the obtained results [3].

Despite being very useful and important in context of the network security solution adopted in an organization, representing a reliable and representative source of attacks identification and threats [5], there is a drawback in the use of honeypots. The problem is related to the amount of data generated by such systems. Huge volumes of data traffic and network activity logs can be generated, making the efficient and automated analysis of such data a real challenge.

Identification and characterization of malicious activities in honeypot traffic data represent important research topics and have been addressed by a variety of approaches and techniques [7] [8] [9]. Classical methods typically employ data mining [8] [9] and regular file parsing [7] for detecting patterns which indicate the presence of specific attacks in the analyzed traffic and computing general statistical data on the collected traffic. An essential characteristic of these methods is the fact that they depend on previous knowledge of the attacks that are intended to be identified, as well as on the collection of significant quantities of logs to work properly. Machine learning techniques have also been applied to honeypot data analysis and attack detection [10] yielding interesting results as those techniques are able to identify malicious activities without relying on previously provided malicious traffic patterns and attack signatures. However, using this technique, a preparation period before use it is needed, in which it is necessary to run several analysis cycles during a so called learning period in order to train the system to recognize a given set of attacks. Only after this period, solutions using this method are able to work effectively. Notice that this learning period may be computationally expensive, which is an important aspect that has to be considered. Furthermore, if the legitimate traffic patterns are altered by any legitimate reasons, machine learning based methods may yield a significant number of false positives, identifying honest connections as malicious activities. These systems are also prone to failure in cases in which specific attacks that were not included in the learning process resembles honest patterns. In such cases, these attacks are not detected, leading to false negatives.

Methods based on principal component analysis (PCA) [11] [12] appeared as a promising alternative to traditional techniques. PCA based methods identify the main groups of highly correlated indicators i.e. principal components which represent outstanding malicious activities in network traffic data collected at honeypots. These methods are based on the observation that attack traffic patterns are more correlated than regular network traffic. The advantage of this method is that it relies exclusively on statistical analysis of the collected data. This feature frees the PCA based solutions from analysis of previous information on the attacks to be detected, as well as

DOI: 10.5769/C2012008 or http://dx.doi.org/10.5769/C2012008
there is no need for training to recognize attacks and separate them from legitimate traffic. These characteristics make PCA based honeypot data analysis methods suitable for automatic attack detection and traffic analysis. However, current PCA based methods [11] [12] still require human intervention, which besides of being impractical for automatic analysis, leads to errors such as false positives.

The contribution of this paper is the proposal of an automatic method to identify network attacks based on data traffic collected from a honeypot. This method is based on state-of-the-art model order selection schemes [13] [14], presenting as main innovation an adaptation of the Modified Exponential Fitting Test (M-EFT) to successfully identify the main attacks contained in the simulation data set, to efficiently distinguish outstanding malicious activities from noise such as backscatter and broadcast packets, which are examples of legitimate traffic that may issue false positives. Moreover, the proposal does also contribute with a model of the network traffic as signals and noise data, interpreting highly correlated components as significant network activities (in this case, malicious activities). This aspect is important as it allows the identification of malicious activities in honeypot network flow datasets without any previous information or attack signatures by applying model order selection schemes. Finally, being based on eigenvalues decomposition techniques, our method is efficiently implementable in hardware [28] and can also be parallelized [29].

The remainder of this paper is organized as follows. In Section II, the concept of honeypots is formally introduced, followed by a discussion about classical analysis methods and related work on PCA based methods for honeypot data analysis. Section III presents notation used in this paper. Section IV describes the dataset preprocessing method through which the data is transformed before Model Order Selection (MOS). In Section V, the classical MOS is introduced as well as the state-of-the-art schemes, followed by the proposal of this paper, i.e. the analysis method based on the M-EFT. In Section VI, an evaluation of several MOS schemes in experiments with real data is presented, in which the experimental results attest the validity of the proposed approach. Finally, Section VII concludes with a summary of the achieved results and direction for future work.

II. RELATED WORKS

In this section, we introduce the concept of honeypot systems and discuss the several methods used for obtain and analysing data in such systems. Special attention is given to methods based on principal component analysis, which are the focus of our results.

A honeypot is generally defined as an information system resource whose value lies in unauthorized or illicit use of that resource [2], although various definitions exist for specific cases and applications. Honeypot systems are designed to attract the attention of malicious users in order to be actively targeted and probed by potential attackers, differently from intrusion detection systems (IDS) or firewalls, which protect the network against adversaries. Generally, network honeypot systems contain certain vulnerabilities and services which are commonly targeted by automated attack methods and malicious users, capturing data and logs regarding the attacks directed at them. Data collected at honeypot systems, such as traffic captures and operating system logs, is analyzed in order to gain information about attack techniques, general threat tendencies and exploits. It is assumed that traffic and activities directed at such systems are malicious, since they have no production value nor run any legitimate service accessed by regular users. Because of this characteristic (inherent to honeypot systems) the amount of data captured is significantly reduced in comparison to network IDSs which capture and analyze as much network traffic as possible.

Network honeypot systems are generally divided into two categories depending on their level of interaction with potential attackers: Low and High interaction honeypots. Being the simplest of network honeypots, the Low Interaction variant simply emulates specific operating systems TCP/IP protocol stacks and common network services, aiming at deceiving malicious users and automated attack tools [16]. Moreover, this type of honeypot has limited interaction with other hosts in the network, reducing the risks of compromising network security as a whole if an attacker successfully bypasses the isolation mechanisms implemented in the emulated services. High interaction honeypots are increasingly complex, running real operating systems and full implementations of common services with which a malicious user may fully interact inside sandboxes and isolation mechanisms in general. This type of honeypot captures more details concerning the malicious activities performed by an attacker, enabling analysis systems to exactly determine the vulnerabilities which were exploited, the attack techniques utilized and the malicious code executed.

Depending on the type of honeypot system deployed and the specific network set up, honeypots prove effective for a series of applications. Since those systems concentrate and attract malicious traffic, they can be used as decoys for slowing down or completely rendering ineffective automated attacks, as network intrusion detection systems and as a data source for identifying emergent threats and tendencies in the received malicious activity [3]. In the present work, we focus on identifying the principal malicious activities performed against a low interaction network honeypot system. Such a method for malicious activity identification may be applied in different scenarios, e.g. network intrusion detection.

A. Data Collection

Among other logs which may provide interesting information about an attacker’s action, low interaction honeypots usually collect information regarding the network connections originated and directed at them, outputting network flow logs. These log files represent the basic elements which describe a connection, namely: timestamp, protocol,
connection status (starting or ending), source IP, source port, destination IP and destination port. The following line illustrates the traffic log format of a popular low interaction honeypot system implementation [17]:

```
2008-06-04 00:00:03.7586 tcp(6) S 56.37.74.42 4406 203.49.33.129 1080 [Windows XP SP1]
```

It is possible to extract diverse information from this type of log while reducing the size of the analysis dataset in comparison to raw packet captures, which contain each packet sent or received by the monitored node. Furthermore, such information may be easily extracted from regular traffic capture files by aggregating packets which belong to the same connection, obtained the afore mentioned network flows

B. Data Analysis Methods

Various methods for honeypot data analysis with different objectives have been developed in order to accompany the increasing size of current honeypot systems, which are being deployed in progressively larger settings, comprising several different nodes and entire honeynets (networks of decoy hosts) distributed among different sites [6]. Most of the proposed analysis techniques are focused on processing traffic captures and malicious artefacts (e.g. exploit binaries and files) collected at the honeypot hosts [7]. Packet capture files, from which it is possible to extract network flow information (representing network traffic received and originated at the honeypot), provide both statistical data on threats and the necessary data for identifying intrusion attempts and attacks [18].

Classical methods for analysis of honeypot network traffic capture files rely on traffic pattern identification through file parsing with standard Unix tools and custom made scripts [16]. Basically, these methods consist of direct analysis of plain-text data or transferring the collected data to databases, where relevant statistical information is then extracted with custom queries. Such methods are commonly applied for obtaining aggregate data regarding traffic, but may prove inefficient for large volumes of data. Recently, distributed methods based on cloud infrastructure have been proposed for traffic data aggregation and analysis [19], efficiently delivering the aggregated traffic information needed as input for further analysis by other techniques.

In order to extract relevant information from sheer quantities of logs and collected data, data mining methods are applied to honeypot data analysis, specifically looking for abnormal activity and discovery of tendencies detection among regular traffic (i.e. noise). The clustering algorithm DBSCAN is applied in [9] to group packets captured in a honeypot system, distinguishing malicious traffic from normal traffic. Multiple series data mining is used to analyze aggregated network flow data in [8] in order to identify abnormal traffic features and anomalies in large scale environments. However, both methods require previous collection of large volumes of data and do not efficiently extract relevant statistics regarding the attacks targeting the honeypot with adequate accuracy.

A network flow analysis method based on the MapReduce cloud computing framework and capable of handling large volumes of data was proposed in [19] as a scalable alternative to traditional traffic analysis techniques. Large improvements in flow statistics computation time are achieved by this solution, since it distributes both processing loads and storage space. The proposed method is easily scalable, achieving the throughput needed to efficiently handle the sheer volumes of data collected in current networks (or honeypots), which present increasingly high traffic loads. This method may be applied to honeypot data analysis, providing general statistical data on the attack trends and types of threats.

C. Methods based on Principal Component Analysis

Several honeypot data analysis methods have been proposed in current literature, among them are principal component analysis (PCA) based techniques [12], [11]. Such methods aim at characterizing the type and number of malicious activities present in network traffic collected at honeypots through the statistical properties and distribution of the data. They are based on the fact that attack traffic patterns are more correlated than regular traffic, much like principal components in signal measurements. The first step of PCA is the estimation of the number of principal components. For this task, model order selection (MOS) schemes can be applied to identify significant malicious activities (represented by principal components) in traffic captures. Automatic MOS techniques are crucial to identify the number of the afore mentioned principal components in large network traffic datasets, this number being the \textit{model order} of the dataset.

Basically, the model order of a dataset is estimated as the number of main uncorrelated components with energy significantly higher than the rest of components. In other words, the model order can be characterized by a power gap between the main components. In the context of network traffic, the principal components are represented by outstanding network activities, such as highly correlated network connections which have, for example, the same destination port. In this case, the principal components represent the outstanding groups of malicious activities or attacks directed at the honeypot system and the model order represents the number of such attacks. The efficacy and efficiency of PCA based methods depend on the MOS schemes adopted, since each scheme has different probabilities of detection for different kinds of data (depending on the kind of noise and statistical distribution of the data itself) [14].

A method for characterizing malicious activities in honeypot traffic data through principal component analysis techniques was introduced in [11]. This method consists in mainly two steps, dataset preprocessing and visual inspection of the eigenvalues profile of the covariance matrix of the preprocessed honeypot traffic samples in order to obtain...
the number of principal components (which indicate the outstanding groups of malicious activities), i.e. the model order. First, raw traffic captures are parsed in order to obtain network flows consisting of the basic IP flow data, namely the five-tuple containing the key fields: source address, destination address, source port, destination port, and protocol type. Packets received or sent during a given time slot (300 seconds in the presented experiments) which have the same key field values are grouped together in order to form these network flows. The preprocessing step includes further aggregation of network flow data, obtaining what the authors define as activity flows, which consist of combining the newly generated flows based upon the source IP address of the attacker with a maximum of sixty minutes inter-arrival time between basic connection flows. In the principal component analysis step, the preprocessed data is denoted by the \(p \)-dimensional vector \(X = (x_1, ..., x_J)^T \) representing the network flow data for each time slot. First, the network flow data obtained after the preprocessing is transformed into zero mean and unitary variance with the following equation:

\[
c_i = \frac{x_i - \bar{x}_i}{\sigma_i^2},
\]

for \(i = 1, ..., p \), where is the sample mean and is the sample variance for . Then the sample correlation matrix of is obtained with the following expression:

\[
R = \frac{1}{N} (C C^T)
\]

After obtaining the eigenvalues of the basic network flow dataset correlation matrix \(R \), the number of principal components is obtained via visual inspection of the screen plot of eigenvalues in descending order. The estimation of the model order by visual inspection is performed by following subjective criteria such as considering only the eigenvalues greater than one and visually identifying a large gap between two consecutive eigenvalues.

The same authors proposed another method based on the same PCA technique and the equations described above for detecting new attacks in low-interaction honeypot traffic [12]. In the proposed model new observations are projected onto the residuals space of the least significant components and their distances from the \(k \)-dimensional hyperspace defined by the PCA model are measured using the square prediction error (SPE) statistic. A higher value of SPE indicates that the new observation represents a new direction that has not been captured by the PCA model of attacks seen in the historical honeypot traffic. As in the previous model, the model order of the preprocessed dataset is estimated through different criteria, including visual inspection of the eigenvalues screen plot.

Even though those methods are computationally efficient, they are extremely prone to error, since the model order selection schemes (through which the principal components are determined) are based on subjective parameters which require visual inspection and human intervention. Apart from introducing uncertainties and errors, the requirement for human intervention also makes it impossible to implement such methods as an independent automatic analysis system. Thus these PCA based analysis methods are impractical for large networks, where the volume of collected data is continuously growing. Moreover, the uncertainty introduced by subjective human assistance is unacceptable, since it may generate a significant number of false positive detections.

III. Notation

Throughout the paper scalars are denoted by italic letters \((a, b, A, B, \alpha, \beta)\), vectors by lower-case bold-face letters \((a, b)\) and matrices by bold-face capitals \((A, B)\). Lower-order parts are consistently named: the \((i, k)\)-element of the matrix \(A \) is denoted as \(a_{i,k} \). We denote by \(\text{diag}() \) the diagonal vector of a matrix \(A \). The element-wise productorial of vectors is denoted by \(\circ \).

We use the superscripts \(^T\) and \(^{-1}\) for transposition and matrix inversion, respectively.

IV. Applying Model Order Selection to Honeypot Data Analysis

Our method for MOS based honeypot data analysis basically consists in applying state of the art MOS schemes to identify principal components of pre-processed aggregated network flow datasets. Each principal component represents a malicious activity and the number of such principal components (obtained through MOS) represents the number of malicious activities. In case this number is equal to zero, no malicious activity is present and in case it is greater than zero, there is malicious activity. As in [1], our objective in this paper is to automatically estimate the number of principal components (i.e. model order) of network flow datasets collected by honeypots. In this section, we introduce our method in details and the steps of data pre-processing necessary before model order selection is performed on the final dataset.

It has been observed that the traffic generated by outstanding malicious activities targeting honeypot systems has significantly higher volumes than regular traffic and is also highly correlated, being distinguishable from random traffic and background noise [11]. Due to these characteristics it is viable to apply model order selection schemes to identify the number of principal components which represent malicious activities in network traffic captured by honeypots systems. Assuming that all traffic directed to network honeypot systems is malicious (i.e. generated by attempts of intrusion or malicious activities), outstanding highly correlated traffic patterns indicate individual malicious activities. Hence, each principal component detected in a dataset containing information on the network traffic represents an individual malicious activity. Analysing such principal components is an efficient way to estimate the number of different hostile activities targeting the honeypot system and characterizing them.
In order to estimate the number of principal components (i.e., malicious activities) the application of model order selection schemes arises naturally as an efficient method. After an appropriate preprocessing of the raw network traffic capture data, it is possible to estimate the model order of the dataset thus obtaining the number of malicious activities. The preprocessing is necessary in order to aggregate similar connections and network flows generated by a given malicious activity. It is observed that, after applying the preprocessing described in the previous section, groups of network flows pertaining to the same activity (e.g., groups which represent connections to and from the destination and source ports, respectively) have high correlated traffic profiles, yielding only one principal component. Thus, hostile activities which generate multiple connections are correctly detected as a single activity and not several different events.

Our method consists in applying RADOI with noise pre-whitening, a state-of-the-art automatic model order selection scheme based on the eigenvalues profile of the noise covariance matrix, to network flow datasets after preprocessing the data with the aggregation method described in the next subsection. RADOI with noise pre-whitening was determined to be the most efficient method for performing model order selection of this type of datasets through experiments with real honeypot data where several classical and state-of-the-art MOS schemes were evaluated (refer to Section VII for the results).

Since it is generally assumed that all traffic received by network honeypot systems is malicious, the model order obtained reflects the number of significant malicious activities present in the collected traffic, which are characterized by highly correlated and outstanding traffic. In our approach, the model order \(d \) obtained after applying the MOS scheme is considered as the number of malicious activities detected and the \(d \) highest dataset covariance matrix eigenvalues obtained represent the detected malicious activities. Further analysis of these eigenvalues enables other algorithms or analysts to determine exactly which ports were targeted by the detected attacks [11].

A. Data Pre-Processing Model

Before performing model order selection on the collected dataset it is necessary to transform it in order to obtain aggregate network flow data which represents the total connections per port and transport layer protocol. The proposed preprocessing method considers an input of network flow data extracted directly from log files generated by specific honeypot implementations (e.g., honeyd [17]) or from previously parsed and aggregated raw packet capture data (such parsing may be easily performed via existing methods [11]). It is possible to efficiently implement this preprocessing method based on a cloud infrastructure, providing nice scalability for large volumes of data [19]. Network flow data is defined as lines which represent the basic IP connection tuple for each connection originated or received by the honeypot system, containing the following fields: time stamp, transport layer protocol, connection status (starting or ending), source IP address, source port, destination IP address and destination port.

First, the original dataset is divided into \(n \) time slots according to the time stamp information of each network flow (\(n \) is chosen according to the selected time slot size). Subsequently the total connections directed to each \(m \) destination ports targeted during each time slot are summed up. We consider that the total connections to a certain destination port \(m \) during a certain time slot \(n \) is represented as follows:

\[
x_m(n) = x_{0m}(n) + n_m(n)
\]

where \(x_m(n) \in \mathbb{R} \) is the measured data in the port, \(x_{0m}(n) \in \mathbb{R} \) is the component related to the outstanding malicious activities and \(n_m(n) \in \mathbb{R} \) is the noise component, mainly consisting of random connections and broadcasts sent to port \(m \). Note that in case that no significant malicious activity is present, the traffic is mostly composed of port scans, broadcasts and other random non-malicious network activities, for instance. Therefore, the noise presentation fits well in (3).

In the matrix form, we can rewrite (3) as

\[
X = X_0 + N
\]

Where \(X \in \mathbb{R}^{3} \) is the total number of connections directed to \(M \) ports \(N \) during time slots. Particularly, if a certain port has not been targeted by outstanding malicious activities, the \(m \)-th line of \(X_0 \) is full of zeros. On the other hand, if a certain \(i \)-th host is responsible for a malicious activity resulting in connections to \(P \) ports, these ports have a malicious traffic \(S \in \mathbb{R}^{P \times M} \) highly correlated. Therefore, mathematically, \(X_0 \) is given by

\[
X_0 = \sum_{i=1}^{d} J_i S_i
\]

where \(J_i \in \mathbb{R}^{M \times L} \) is a zero padding matrix, such that the product \(J_i \) by \(S_i \) inserts zero lines in the ports without significant malicious activities. The total number of hosts with malicious traffic is represented by \(d \). In an extreme case, when each line of \(S \) has very high correlation, the rank of \(S \) is 1. Therefore, the rank of \(X_0 \) is \(d \) which is also known in the literature as model order or the total number of principal components, representing the total number of outstanding malicious activities detected in the honeypot dataset.

In order to represent the correlated traffic of the malicious traffic, we assume the following model

\[
S = Q S'
\]

where \(S' \in \mathbb{R}^{P \times M} \) represents totally uncorrelated traffic and \(Q \in \mathbb{R}^{n \times n} \) is the correlation matrix between the ports. Note that if the correlation is not extremely high, the model order represents the sum of the number of uncorrelated malicious activities of all hosts which interacted with the honeypot.
environment. Therefore, the model order is at least equal to the total number of malicious hosts.

The correlation matrix of \(X \) defined in (4) is computed as
\[
R_{xx} = E[XX^T] = R_{nx} + R_{nn},
\]
where \(E[\cdot] \) is the expected value operator and \(R_{nn} = \sigma_{nn}I \in \mathbb{R}^{M \times M} \) is valid for zero mean white noise, where \(\sigma_{nn} \) is the variance of the noise samples in (3). Note that we assume that the network flows generated by outstanding malicious activities are uncorrelated with the rest of traffic.

V. Model Order Selection Schemes

Several model order selection schemes exist, each of them with different characteristics which may affect their efficacy when applied to network traffic data. In this section, we present an overview of model order selection schemes and propose the necessary modifications in order to apply those schemes to malicious activity identification in honeypot data.

Usually, model order selection techniques are evaluated by comparing the Probability of Correct Detection or PoD (i.e., the probability of correctly detecting the number of principal components of a given dataset) of each technique for the type of data that is being analysed, since the different statistical distributions, noise and characteristics of specific datasets may alter the functioning and accuracy of different MOS schemes [14]. In other words, it is necessary to evaluate different MOS schemes with different characteristics in order to determine which MOS scheme is better suited for detecting malicious activities in honeypot network flow data. In this sense, we propose methods based on different schemes and evaluate them in the experiments presented in the next section.

In Subsection V-A, we show a brief review of the 1-Akaike’s Information Criterion (AIC) [20], [13] and 1-Minimum Description Length (MDL) [20], [13], which are classical MOS methods, serving as a standard for comparing and evaluating novel MOS techniques and applications. Since RADOI [21] is one of the most robust model order selection schemes mainly for scenarios with colored noise, we propose the RADOI together with a noise prewhitening scheme in Subsection V-B.

Considering data preprocessed with the procedures described in the previous section, our method proceeds to performing model order selection of the dataset obtained. Similarly to [11], we also apply the zero mean in the measured sample. Therefore,
\[
x_{ZM} = x - \bar{x},
\]
where the vector \(x_i \in \mathbb{R}^{1 \times N} \) has all temporal samples of network flows directed to the port \(i \), \(\bar{x} \) is the mean value, and \(x_{ZM} \) contains the zero mean temporal samples. Such procedure is applied for each group of network flows directed to a single port in order to obtain \(X_{ZM} \). By applying (8), the assumption that the samples have zero mean is fulfilled.

The techniques shown here are based on the eigenvalues profile of the noise covariance matrix \(R_{xx} \). Since the covariance matrix is not available, we can estimate it by using samples of the traffic. Therefore, we can approximate the covariance matrix to the following expression
\[
\hat{R}_{xx} = \frac{1}{N} X_{ZM}X_{ZM}^T.
\]

The eigenvalue decomposition of \(\hat{R}_{xx} \) is given by
\[
\hat{R}_{xx} = E\Lambda E^T
\]
where \(\Lambda \) is a diagonal matrix with the eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_d \) with \(\alpha = \min(M, N) \) and the matrix \(E \) has the eigenvectors. However, for our model order selection schemes, only the eigenvalues are necessary.

A. 1-D AIC and 1-D MDL

In AIC, MDL and Efficient Detection Criterion (EDC) [22], the information criterion is a function of the geometric mean, \(g(k) \), and arithmetic mean, \(a(k) \), of the \(k \) smallest eigenvalues of (10) respectively, and \(k \) is a candidate value for the model order \(d \).

In [23], we have shown modifications of AIC and MDL for the case that \(M > N \), which we have denoted by -D AIC and -D MDL. These techniques can be written in the following general form
\[
d = \arg\min_k f(k),
\]
where
\[
f(k) = N(\alpha - k)\log\left(\frac{g(k)}{a(k)}\right) + p(k, N, \alpha),
\]
where \(d \) represents an estimate of the model order \(d \). The penalty functions for -D AIC and -D MDL are given by \(p(k, N, \alpha) = k(2\alpha - k) \) and \(p(k, N, \alpha) = \frac{1}{2} k(2\alpha - k) \log(N) \) respectively. According to [13] \(\alpha = \min(M, N) \), while according to [25], we should use \(\alpha = M \) and \(0 \leq k \leq \min[M, N] \).

B. RADOI with Noise Prewhitening

The RADOI model order selection scheme is an empirical approach [21]. Here we propose to incorporate the noise prewhitening to the RADOI scheme in order to improve its performance. In order to apply the noise prewhitening, first samples containing only noise traffic are collected. Such noise samples can be obtained from \(M_i \) ports where no significant malicious activities are observed. In practice, we can select the \(M_i \) ports with lowest traffic rates (i.e., ports which received an insignificant number connections during the time span observed, for example, less than 1 connection per minute). By using the noise samples, we compute an estimate of the noise correlation matrix
\[
\hat{R}_{nn} = \frac{1}{N} N_{ZM}N_{ZM}^T,
\]
where N_{zz} contains the zero mean noise samples computed similarly as in (8). With $\hat{R}_{nn'}$ the noise prewhitening matrix can be computed by applying the Cholesky decomposition
\[
\hat{R}_{nn'} = LL^T, \tag{13}
\]
where $L \in \mathbb{R}^{n \times n}$ is full rank.

The noise prewhitening of X is given by
\[
X_{\text{pwt}} = L^{-1}X. \tag{14}
\]

We compute the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_M$ of the covariance matrix of X_{pwt} and we apply them on the RADOI cost function, which is given by
\[
d = \arg\min_k \text{ADOI}(k) \tag{15}
\]
where
\[
\text{ADOI}(k) = \lambda_{k+1} \left(\sum_{i=2}^{M} \lambda_i \right)^{-1} - \bar{c}_k \left(\sum_{i=1}^{M-1} \lambda_i \right)^{-1} \tag{16}
\]
and α is given by
\[
\alpha = \left[\arg\max_k \frac{(\lambda_k - \mu_k)}{\mu_k} \right]^{-1} \tag{17}
\]

In [21], it is shown that RADOI outperforms the Gershgoerin disk estimator (GDE) criterion [25] in the presence of colored noise, while its performance in the presence of white noise is similar to the GDE criterion.

C. Modified Exponential Fitting Test

AIC and MDL often fail when the number of independent temporal snapshots N is small, in contrast to the EDC and mainly the Nadakuditi Edelman Model Order (NEMO) selection scheme [24], whose PoD is very high in such a case. The Modified Exponential Fitting Test (M-EFT) [23], an improved version of the Exponential Fitting Test (EFT) [30,31], has also a very high PoD for such a scenario. The exponential fitting test (EFT) model order selection scheme is based on the observation that, in the noise-only case, the profile of the ordered eigenvalues can be well approximated by a decaying exponential.

Let λ be the i-th eigenvalue of the sample covariance matrix in (9). The exponential model may be expressed as
\[
E\{ \lambda \} = E\{ \lambda \} \cdot q(\alpha, \beta)^{i-1}, \tag{18}
\]
where $E\{ \cdot \}$ is the expectation operator and we assume that the eigenvalues are sorted so that λ_1 is the largest of these. The term $q(\alpha, \beta)$ for the M-EFT is given by
\[
q(\alpha, \beta) = \exp \left\{ -\frac{1}{\alpha^2 + \beta^2} - \frac{3000}{(\alpha^2 + \beta^2)^2} - \frac{600}{\beta^4(\alpha^2 + \beta^2)} \right\} \tag{19}
\]
So that $0 < q(\alpha, \beta) < 1$ and where $\alpha = \min[M, N]$ and $\beta = \max[M, N]$.

Three fundamental equations are necessary for the derivation of M-EFT. The first one is the assumption of the exponential profile approximation in (18). The second is the sum of the expectation of the eigenvalues in
\[
\sum_{i=1}^{M} E\{ \lambda_i \} = M \cdot \sigma_n. \tag{20}
\]

The last fundamental equation is the expectation of the square of the eigenvalues in
\[
\sum_{i=1}^{M} E\{ \lambda_i^2 \} = \frac{M \cdot (M + N + \gamma) \sigma_n^4}{N}. \tag{21}
\]

In case of real-valued noise, we set $\gamma = 1$, otherwise $\gamma = 0$. Basically (21) is modified here in contrast to [8,19,5] due to the fact that $E\{n_{m,n} \cdot n_{m,n}^* \cdot n_{m,n} \cdot n_{m,n}^* \} = 3$ for real-valued noise, and is equal to 2 for complex-valued noise. Therefore, in contrast to (19), we obtain q from the following equation
\[
(C_1(M, N) - 1) \cdot q^{\alpha - 1} + (C_1(M, N) + 1) \cdot q^\alpha - (C_1(M, N) + 1) \cdot q + 1 = 0 \tag{22}
\]
where, to find a closed-form expression for the rate q in (19), equation (22) is solved in [5] using an approximation. Alternatively, in this variation of M-EFT, we can (22) using numerical methods. In order to estimate the threshold coefficients η_p, we have to consider N different realizations of a white Gaussian noise matrix $N \in \mathbb{C}^{M \times M}$. Therefore, to obtain the Probability of False Alarm P_{fa} as a function of the threshold coefficient η_p, we assume the following hypotheses
\[
H_{p=1}: \lambda_{M-p} \text{is a noise EV}, \quad \frac{\lambda_{M-p} - \lambda_{M-p}}{\lambda_{M-p}} \leq \eta_p
\]
\[
\overline{H}_{p=1}: \lambda_{M-p} \text{is a signal EV}, \quad \frac{\lambda_{M-p} - \lambda_{M-p}}{\lambda_{M-p}} \leq \eta_p \tag{23}
\]
where the range for η_p is also a design parameter. We define N_{fa} as the number of times that $H_{p=1}$ is observed for all H noise realizations. Therefore, $P_{fa} = N_{fa} / N$, and for each value of the predefined range of η_p, a certain value of P_{fa} is computed.

VI. Simulations

In this section, we describe a series of experiments that were performed in order to validate our proposed scheme for detection of malicious activities in honeypot network traffic. Throughout this section we consider a dataset collected at a large real world honeypot installation. In Subsection VI.A, we compare the performance of several model order selection schemes presented in Section V, determining that the M-EFT and RADOI with zero mean and noise pre-whitening are the most efficient and accurate methods for analysing such data.
A. Model order selection on the preprocessed dataset

In several scenarios it is not possible to identify visually the malicious traffic. In this subsection, we verify the performance of these model order selection schemes, determining that the M-EFT and RADOI with zero mean and noise pre-whitening are the most efficient and accurate methods for analysing such data.

First, the zero mean zero mean is applied to the preprocessed dataset according to (8). After the application of zero mean (8) in the dataset presented in [1], the total amount of connections directed and originated from each port assumes negative values, which have no physical meaning but affect the PoD of several MOS schemes. The effect on the eigenvalues profile is almost insignificant when comparing the pure preprocessed dataset to the dataset after the application of zero mean. However, the accuracy of the model order selection schemes may vary when the zero mean is applied, even though it is insignificant for visual inspection purposes.

Note that the eigenvalues profiles obtained for the noise only and full dataset cases after applying the zero mean have similar characteristics to the eigenvalues profiles obtained for the preprocessed data before applying the zero mean, in the sense that the eigenvalues which do not represent malicious activities fit much better to the linear curve than the eigenvalues which indicate outstanding malicious activities. Moreover, it is also possible to clearly estimate the model order as 4 by visual inspection of the signal plus noise eigenvalues profile after zero mean.

Having preprocessed the original network flow dataset, applied the zero mean in the noise only dataset and applied the zero mean in the full dataset, we now proceed to actually estimating the model order of the original dataset [1]. In order to evaluate each MOS scheme the model orders of both the full dataset (containing both noise and outstanding traffic) and the noise only dataset are estimated. In these experiments we estimate the model order using the following MOS schemes: 1-D AIC [20], [13], 1-D MDL [20], [13], efficient detection criterion (EDC) [22], Nadakuditi Edelman Model Order selection scheme (NEMO) [24], Stein’s unbiased risk estimate (SURE) [32], RADOI [21] and KN [33].

First, the model order of the noise only dataset after applying the zero mean is estimated, obtaining the results shown in Table 1. For the results in Table 1, the zero mean is applied to the noise samples, since a greater probability of false alarm is necessary for M-EFT if analysing a dataset without zero mean. The results obtained show that all MOS schemes fail when estimating the model order for the noise only case, except for the M-EFT, which correctly estimated a model order equal to 0.

Finally, the model order of the complete dataset after applying the zero mean is estimated, yielding the results shown in Table 2. In this case, both the M-EFT and RADOI with noise pre-whitening estimated the model order correctly (indicating a model order equal to 4) while all the other schemes failed.

In Tables 1 and 2, note that the M-EFT gives the correct model order estimation for scenarios without and with malicious traffic. RADOI with prewhitening returns the correct estimation of the model order only for scenario with malicious traffic. While the RADOI model order selection with noise pre-whitening may be successfully applied to malicious activity detection in normal honeypot datasets (which contain traffic generated by malicious activities with high probability), its behavior when applied to the noise only dataset is expected, since RADOI is not generally efficient for noise only data. The results obtained show that the M-EFT correctly estimates the model order while RADOI with pre-whitening may fail for noise only cases. Hence, we conclude that the M-EFT has the best performance in honeypot network flow data analysis via PCA, being the MOS scheme better suited for malicious activity identification in such scenarios.

Table 2: Model order selection via the eigenvalues of the covariance matrix of the signal plus noise samples.

<table>
<thead>
<tr>
<th>AIC</th>
<th>MDL</th>
<th>EDC</th>
<th>SURE</th>
<th>RADOI</th>
<th>KN</th>
<th>NEMO</th>
<th>M-EFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>21</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>4</td>
</tr>
</tbody>
</table>

VII. Conclusions

In this paper, we have proposed a blind automatic solution to detect malicious activities and attacks in network traffic data collected at honeypots. First we propose a dataset preprocessing model for network flow data obtained in honeypots and we verify the validity of our approach through simulation results with real log files collected at a honeypot system in operation at the network of a large banking institution. Several model order selection methods were experimented with the preprocessed simulation data, showing that the modified exponential fitting test (M-EFT) yields better results for this type of data.

Similarly to the measurements in signal processing, if the traffic in honeypots does not represent significant groups of malicious activities, the eigenvalues of the covariance matrix of the traffic samples have an exponential profile, linear in log scale. On the other hand, if there exist high correlations between connections (indicating significant malicious activities), the eigenvalues fit much better to the linear curve than the eigenvalues which do not represent malicious activities.
activities), the eigenvalues profile of the covariance matrix of the traffic samples have a break in the exponential profile. The break in the exponential profile indicates the model order which, in this case, represents the number of outstanding attacks observed in the honeypot data.

Once a pattern of the malicious and of the non-malicious traffic is identified, instead of solving the problem by visual inspection, we propose to apply the modified exponential fitting test (M-EFT). Because it correctly estimates the model order in scenarios with or without significant malicious traffic, successfully identifying the principal attacks targeting the network during the analysed time span. The principal components and eigenvalues obtained can also be further analysed for identifying the exact attacks which they represent depending on which ports they are related to.

The method proposed in the present work is an efficient alternative to data mining and artificial intelligence methods, not requiring previous collection of large quantities of data or adaptive learning periods. Since it is solely based on statistical properties of the collected data, i.e. the correlation between network flows), it is capable of automatically analysing varying volumes of honeypot traffic without depending on human intervention or external information. Furthermore, it is able to identify outstanding attacks through the correlation between the malicious packets, eliminating the need for attack signatures and complex rule parsing mechanisms. As a future work, we point out the implementation of a scalable parallel variant of the proposed method capable of handling large volumes of data and possibly based on cloud computing infrastructure, requiring parallel implementations of the M-EFT and the dataset preprocessing technique. Moreover, a network intrusion detection system based on the malicious activities identification technique introduced in this paper seems to be an interesting sequel to this work.

Acknowledgements

The research presented in this paper was conducted under a grant from DELL Computers of Brazil under the agreement 001/2010.

References

